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New functions G(H, &) and K(H, &) derived by application of Fourier series with the coefficients
depending upon unitary structure factors U(H) are introduced and a method for their use for sign
determination is suggested. For all £ within the interval &min, < & <%, where &y, is a structure depen-
dent parameter, the conditions G(H, &) =0 and K(H, £) =0 are satisfied only then when the correct
signs are alloted to the coefficients. The method was successfully applied to a hypothetical centro-
symmetric structure for which the signs of U(R00) for all 2 from 1 to 16 were determined. A genera-
lization of the functions which enables to include gradually all |U(kkl)| into the computation is also

suggested.

1. Introduction

The phase determination from the diffraction intensity
data is the main problem in solving crystal structures.
The recent search for a direct method for the deter-
mination of phases was greatly stimulated by Harker
& Kasper’s paper (1948) on the use of inequalities
existing between structure factors. During the last
decade several methods have been developed by means
of which the phases of structure factors can be found
directly. All these methods which are based either on
inequality relations, probability theory, statistics or
the Patterson function have been published in this
Journal and so are known to the X.ray crystallo-
graphers.

Meanwhile, only a few papers published deal with
the application of Fourier series for direct sign deter-
mination; Gillis (1948) in deriving one of his inequali-
ties was first to use the |cos? 2zz| function developed
in a series of cosine terms only. Recently, Hughes
(1957) used general Fourier series in deriving a set of
inequalities which in certain cases, were more con-
venient.

In the present paper a new method for the direct
sign determination for centrosymmetric structures is
described. The method is based on the use of functions
derived by expanding the expression for the structure
factor in a Fourier series.

2. One-dimensional case

Analogous to the expression for the unitary structure
factor

Nje
Uc(h) =2 3 n; cos 2mha; (2-1)
i=1

in the one-dimensional centrosymmetric case, we
introduce the expression:

Nj2
Us(h) =2 Z ns sin 2mwha;

1=1

(2-2)

with the usual symbols and notation.
A centrosymmetric structure can always be defined
in such a way that:

0<|z| <%. (2-3)
If the condition

0<|z <} (2-4)
were satisfied it would be possible to expand each
cosine term with 2 odd in a Fourier cosine series with

the fundamental period 2L =1:

o0
n; cos 2mha; = nyao(h) + 2 nian (k) cos 2n2nx; (2-5)

n=1
where ao(k) and a.(h) depend only upon the values of
k and n (Appendix (i), (1), (2)).
For the purpose of using equation (2-5) under
condition (2-3) we introduce a new parameter & such
that:

0<|wm—&<t. (2-6)

Then equation (2-5) can be written:

s cos 27h(xi— &)

—[niao(k)+ E nin (k) cos 22n(z;— &)]=0. (2:7)
n=1

By summation over all x; we obtain the equation:

N2
2 3 n; cos 2mh(zi— &)

=1

— {ao(k)+n§1an(h) [227@1 cos 272n(x;— &-‘)J} =0,

(2-8)
the validity of which now is given by the condition:
0 < |zi(max.)—&| < % (2-9)

which means that for all values of £ within the interval

Snin <6< % (2+10)
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equation (2-8) must be satisfied. Thus

Emiu.zxi(max') - i .

Now we shall consider the left side of equation (2-8)
as a function G(k, £). It follows that, for given para-
meters (h, x;), G(h, £)=0 only if the values of & are
within the limits defined in (2-10).

If we substitute the sum of cosines and sines in
equation (2-8) by the expressions (2-1) and (2-2)
respectively, we have

G(h, &)=Ue(h) cos 2nhé&
—[ao(R)+ X an(h)Uec(2n) cos 2n2né]
+Us(h) sinn2nh.§—[2 @y (h)Us(2n) sin 272n&] (2-11)
where G(k, §)=0 for )
fom. <6< 1.

The function G(h, §) is best represented graphically
when plotted against £ with an &.;, arbitrarily chosen,
since the value of £, changes from structure to
structure (Fig. 1).

G(h&)

0-25
& un ¢

Fig. 1. General shape of the function G(k,&) for h=1(1),
h=3(2) and h=5(3). As G(h, &) depends upon the unitary
structure factors, &min. and the shape of the curve change
from structure to structure.

The shape of the curve depends upon both the
moduli and the signs of the coefficients Uc(h), Uc(2n),
Us(k) and U,(2n). If only the moduli are known we
can allot a sign to each of these coefficients arbitrarily.
Obviously, we should try several sets of signs, but
only that set may be considered as correct for which
G(h, &)=0 for all ¢ satisfying condition (2-10). More-
over, the value of &;, for a given odd % will be valid
for any other odd A, which yields an additional con-
dition for &.;, and a further check for the reliability
of the chosen set of signs. Herewith the fundamental
idea of the method is explained.

The coefficients Us(h) and Us(2n) cannot be deter-
mined from the experiment. This obstacle is easily
removed by using Fourier series involving only cosine
terms in the interval (0, 3):
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Us(h) = bo(h)+ X bu(h)Us(n) (2-12)
(Appendix (ii), (3)—(6)). Herewith the use of the func-
tion G(h, &) is limited only to those structures for which
|zi(max.)| < }. A suggestion for the use of G(k, &) in
the case when x;(max.)=1% is given in Appendix (iv).
An additional relation between the structure factors
can be obtained in a similar way by expanding
cos? 2mhr and —cos? 2;hx in a Fourier cosine series
in the interval [0, ] and [%, 3] respectively, with the
fundamental period 2L=1 (Appendix (iii), (7)). Thus
we introduce another function K(k, &) defined as:

K(h, &) = 14 U.(2h) cos 2n2h&
—2[ 3 Ggn i1 (R)Uc(2n+1) cos 27 (2n +1)£]

+Us(2h) sin 272k
—2[Z a3,11(R)Us(2n+1) sin 27 (2n+1)&]  (2:13)

where K(h,£)=0 for all values of & which satisfy
condition (2-10).

The function G(k, &) involves even structure factors
as coefficients of the cosine terms except one which is
odd. On the contrary the values of the even coefficients
of the sine terms depend upon the odd structure
factors. For the function K(k, &) the inverse relation
holds. The function G(k, &) should be more convenient
for determining the signs of the even structure factors
and K (k, &) for the odd ones, as will be demonstrated
in detail in § 4.

3. Generalization of G(h, {) and K(h, §) for
the three-dimensional case

The reflexions Akl are divided into groups with indices
ph, pk, pl where p is an integer defining the group.
By appropriate transformation of the axes for each
Rkl, the indices ph, pk, pl can be transformed into
ph', 0, 0 and the functions G(%, §) and K(k, £) may be
applied in the same way as in the one-dimensional
case. Using the reciprocal-lattice notation, we have for
each H(hkl) in the pth group H=pH, where Hy is the
vector belonging to the lowest reflexion. Using the
same notation the expressions (2-1) and (2-2) can be
rewritten

N2
Uc(H) =22 n;cos2rH.1; (8:1)
i=1
N2
Us(H) = 2 3 n; sin 2zH. 1 (3-2)

i=1

respectively. Similarly, we introduce a new parameter
defined by &' =Hpy.§&, where the value of &,,;, depends
upon Hy. For the sake of simplicity and analogy with
the preceding paragraph, & will be further written
instead of & and &,;, instead of &,,. For the same
reason G(H,¢') and K(H, &) will be replaced by
G(H, &) and K(H, &) respectively.
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The functions G(H, &) and K(H, &) may therefore
be written in the form

G(H, &) = U.(H) cos 2npé
— [ao(p)+ g an(p)U:(2nHo) cos 2n2n§}
n=1

+ Us(H) sin 2apé — [E‘ an(p)Us(2nHy) sin 2n2n§}
n=1

(33)
K(H, &) =1+ U.(2H) cos 2n2p¢

-2 { 3‘ Aon1(P)Ue[(2n+ 1)H] cos 27(2n + 1)5}
n=1
+ Us(2H) sin 272pé&

-2 { %ag,,ﬂ(p) Us[(2n+ 1)H] sin 27(2n + 1)5} (3-4)

where p is now an odd integer.

Each of the functions G(H, &) and K(H, &) is iden-
tical with a sum of Fourier series G;(H, &) and K:(H, &)
respectively, the sum being taken over all atoms in
the unit cell, so that we may write:

GH, &) = 2.3 Gi(H, &) (3:5)
=1
N2

KMH,§) =22 Ki(H,§). (3-6)
t=1

Multiplying each G:(H, &) as well as Ki(H, &) by
cos 2 H;.r; and sin 2z H;.r; respectively, we obtain
new functions G¢, K., Gs and K; of the form:

N[2

Ge(H, Hy, &) = 2 3 Gi(H, &) cos 2 Hy.1;  (37)
i=1
Nj2

K.(H, Hy, & =23 Ki(H, £) cos 2nHi.1; (3:8)
i=1

Nj2
Gy(H, Hy, &) = 2.3 Gy(H, &) sin 2zHi.1; (3+9)
=1

Ny

Ko(H, Hy, &) =2 SUKL(H, &) sin 2 Hy .1 (3-10)

=1

where H; is not necessarily different from H. The value
of &,,;, which belongs to these functions will be either
equal to, or less than the value of &,;, belonging to the
function G(H, &) and K(H, &), no matter which H; has
been chosen. It is evident that the functions (3-7)-
(3:10) depend upon (H-+H,), (H—H,), (2nHo+H,),
(2nHo — Hl), [(2n + 1)H0 —+ H1] and [(27L +1 )Ho —_ Hl].

For the purpose of expanding the expressions (3+7)-
(3-10) in series similar to those given by (3-3) and (3-4),
we introduce new symbols by writing

Ni2
Ucc(Hl, H2) =2 (ni cos QnHl.ri) (COS 2nHs.13)
= (311)

AC12
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N2
ch(Hl, Hz) =22 (n: cos 27ZH1.1’5) (sin 27ZH2.I'1)
i=1

(3-12)
N2
Use(H1, Ho) = 2'2 (n¢ sin 2 Hy . 14) (cos 2w He.13)
=t (3-13)
Nj2
Uss(Hl, Hz) = 22 (m sin 27tH1.l'i) (sin QﬂHz.ri) .
= (3-14)

Using the formulae (2:1) and (2:2) we may write
these expressions in the form

Uce(Hi, He) =3[ U(H:+ He) + U.(H;—Ha)] (3-15)
ch(Hl; H2)=%[US(H1+H2)_ Us(Hl—'Hz)] (316)
Use(Hy, Ho) =3[ Us(H1 + He) + Us(H1 — Hz)] (3-17)

Uss(Hi, Ha) =4[ — Uo(H1 + He) + Uo(H: — He)] . (3-18)

We have now for the functions (3:7)-(3-10) the fol-
lowing expressions:

Ge(H, Hy, &) = Uc(H, Hi) cos 2npé
+ Us.(H, H;) sin 2ap&—ao(p)Uc(Hi)

— [g‘an (p) Uce(2nHo, Hy) cos 2n2n§}
n=1

— {g‘an(p)Usc(?nHo, H;) sin 2n2n§} (3-19)
n=1

K.(H, Hy, §) = Uc(Hy)
+ Uce(2H, Hy) cos 272p& + Use(2H, Hy) sin 272pé&

-2 {3 o1 1(P)Uce[(2n+ 1)Ho, Hi] cos 2(2n + 1)5}
n=1

—92 { S a0y (P)Usel(2n+1)Ho, Hy sin 27(2n+ 1)5}
n=1

(3-20)
G;(H, Hy, &) = Ues(H, Hi) cos 2pé
+ Uss(H, Hy) sin 2aap& —ao(p) Us(H,)
- [ 3 4 (p) Uss(2nHo, Hy) cos 2n2n§]
n=1
— {Ean(p)U&;@nHo, H;) sin 27:2725} (3-21)
n=1

Ky(H, Hy, &) = Us(Hy) + Ues(2H, Hy) cos 2n2pé
+ Uss(2H, Hy) sin 272pé&

-2 { E‘azn+1(p)ch[(2n+ 1)Ho, H1] cos 2n(2n + 1)5}
n=1

-2 { 3 41(P)Uss[(2n+1)Ho, Hy] sin 27(2n + 1)5} .
n=1

(3-22)

By variation of Hj all 2kl can be included in the com-

putation. If a convenient value of H was chosen, one

will obtain a &, With a value considerably smaller
than }. The value of &nmin. depends upon the atomic

51
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coordinates (i, ¥i, i), i.e. it varies from structure to
structure.

A further generalization of the expressions (3-7)-
(3-10) might be useful by the introduction of more H;
terms. In this case we have:

Goee(H, Hy, Ho, Hs, ..

Ss8

(cos 2t Hy.1;) (cos 2xHz.1y) (cos 2 H3. ;)

N2
LE=23GH, &) x
i=1

(Sill 27IH1.I'1:) (sin 27'5H2.l'1:) (Sin 27tH3.r.;) . (3~23)
N2
Keee(H, Hy, Ho, Hg, ..., §) =23 K (H, §) X
$88 im1
(c0s 27 Hy . x1) (005 2 Ha. 1) (c0s 2w Ha. ) g o

(sin 27Hy.1;) (sin 272 Ha. ;) (sin 27 Hs.13).

4. Application and discussion

The functions G(k, &) and K (k, £) may be conveniently
applied for sign determination in the following way:

The search for the correct set of signs begins with
the set which satisfies condition (2-10). At first, we
have to remember that this condition is satisfied for
only one set of signs Sz, belonging to even amplitudes
U¢(2n), but that two sets of signs S,,.; and —8,, .,
can be alternatively allotted to the odd amplitudes
Uy2n+1). This is due to the alternative imposed by
the choice of the origin, since we can define the struc-
ture by means of the parameters x; as well as §+ux;.
It will be convenient therefore to omit all odd terms
U¢(2n+1) and to carry out the computation with a
reduced function G, (%, £) which includes the even terms

() only, This means ek an achitoary symmetry

centre was introduced in the points =%, $ so that
to each atom in z; an arbitrary atom }—x; was
added. For this reason, two sets of signs Sz» and
(—1)282, are possible, according to the choice of
origin at #=0 or 2=%}. Which of the two sets is correct
has to be determined by means of the function
K(h, &). The set of signs obtained by means of G:(1, §)
is to be applied in considering the next odd function
Gr(3, &), by which the next even amplitude Uc(27n) is
introduced and the procedure continued.*

The method was examined in this laboratory on a
hypothetical centrosymmetric structure defined, with-
out the knowledge of the author, by five identical
points atoms with the z-coordinates given in Table 1.

* In practice, the function G(#, &) will not have the constant
value zero throughout the interval &min. < & £ } but will
fluctuate between small positive and negative values decreas-
ing to G(h, §)=0 for £=}. This fluctuation is caused by the
approximation of the series by a limited number of terms and
may be source of an uncertainty in the choice of the signs.
It is necessary, therefore, to consider the subsequent functions
G(h, &) with k odd in order to find out the correct set of signs
and so to eliminate the ambiguous ones. It might happen
that even after that trial we cannot decide between two sets;
that will be so when the values of U;(h) are very near to zero.
On such an occasion we have to decide which set of signs is
most probable.
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The unitary structure factors U.(k) were calculated for
k from 1 to 16, but only the moduli |Uc(%)| were given
to the author for sign determination by means of the
suggested method.

Table 1. Atomic parameters of the hypothetical

structure
z, 006 xrg 0-30
z, 020 x5 040
r; 024

The functions G and K were multiplied by a factor
2007 for the sake of convenience in the computation
which was carried out by means of Beevers & Lipson
strips.

The terms of the series included in the computation
on Gk, &) and K(h, &) depended upon & and U(n).
So for example the coefficients of the series in G(k, &)
are of the value:

4h

o = = an?)

sin 27:zh/4 . cos 2nn/2

(Appendix (i), (2)). It is seen that those terms of the
series with the coefficients a, where the difference
(h2—4n?) is as small as possible will most contribute
to the sum of the series. By increasing 4, the higher
terms of the series will also be included. By analogy
the same is true for K (A, §). Absolute values of unitary
structure factors exert also a great influence upon the
convergence of the series. In the product by a, they
give the criterion to judge whether they will be in-
cluded in the computation or not.

The reduced function G4(1, §) was given by the for-
ol

2007G(1, &)
= —400—800/3U,(2) cos2n2 &+ 800/15U+(4) cos2m4 &
—800/35U,(6)cos 26+ — . . . +628U(1)sin2x& .

In the first approximation the remaining terms were
omitted from the computation.

Substituting the values for U.(h) for =2, 4, 6 from
Table 4 we have

2007Gr(1, &)= —400—83. 82 cos 2n2&
+9.8;1cos 2n4&—8. 8 cos 2n6&
—[—400+83.824+9.84+8.8¢] sin 27§ .

In order to find out the correct set of the three signs
Sz, Ss, S¢ we have to compute 23=8 different for
20072G-(1, £). The result is shown graphically in Fig.2.
It is clearly seen that only set No. VI (Table 2) in

Table 2. Variation of signs of the structure factors
U(2), U4) and U(6)

Sz SA ‘SG S2 S4 Ss

I +1 +1 +1 A +1 -1 -1
II +1  +1 -1 VI -1 +1 -1
III +1 -1 +1 VII -1 -1 +1
v -1 +1 +1 VIII -1 -1 -1
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628 G(1. &)
20

10

() /

Fig. 2. Curves of the functions G(1, &) for eight possible varia-
tions of the signs S,,8,, Sg for the hypothetic structure.
Variation No. 6 is correct.

which Sa=—1, Sa=+1, Se¢= —1 satisfies the con-
dition (2-11) where &;, has the value &,;, =0-20.
For all the other seven variations of signs the function
2007Gr(1, &) ‘detaches’ itself considerably from the
abcissa even very near the point £§=} and remains
different from zero for all £ which is §<}.

Now, we have to use the function G,(3, £) with the
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gave the signs for the amplitudes for higher %. (Fig. 3
and Table 3).

Table 3. Subsequent determination of the signs
Sen by means of G(h, §)

‘S2 Sd SG SB SIO ‘812 Sld Slﬁ

G(1, &) -1 +1 -1

G3,8 -1 +1 -1 -1 +1
G5, —1 +1 —1 —1 +1
1,8 -1 +1 -1 =1 +1 -1

¢(11,& -1 +1 -1 =1 +1 =1 =1 +1

Thus, all possible variations of signs for the even
amplitudes were reduced to two sets of signs Sa, and
S2x(—1)». Only the result for such a small amplitude
as |U(14)|=0:06 could not be considered as reliable.
Nevertheless the sign S14= —1 seemed more probable.

Function K(h, &) involves, except U(2h), only odd
structure factors U,(2n+1) and Us(2n+1). Mean-
while, all Us(2r+1) involve even terms Uc(2n) only,
for which the signs have just been determined and given
by the two alternative sets. It was shown by the com-
putation, which had been carried out for K(1, £), and

Table 4. Calculated S. and determined Sy signs
of the hypothetical structure

signs for Uc(2), Uc(4), Uc(6) just obtained and try to ’IL IT{;(()Z)I fcl fdl :; IUOfég)l fcl fdl
find out the correct signs for Uc(8) and U.(10). We o 082 —1 -1 10 028 41 +1
can easily establish that G+(3, £)=0 for all £ for which 3 011 41 +1 11 040 —1 =1
0-20 < £ < }, when the above signs Sy for k=2, 4, 6 4 017 41 +1 12 015 -1 -1
are inserted and when Sg=—1 and Sio=+1. The o g:gg i} i{ }z g:gg ii ii
use of the subsequent functions Gy(5, &), G+(7, &) and 7 020 —1 -1 15 020 +1 +1
Gr(11, £) confirmed the previous choice of signs and 8 029 -1 -1 16 026 +1 +1
628G(hE) \
\ 6(%.4)
20
10
]
N —
020 —_— 0%
g
10
G(1,8)

Fig. 3. Curves of the function G(k, £) for k=1, 3, 5, 7, 11 by means of which the correct signs Sj), for
the hypothetical structure were determined.

51+
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K(3,8), K(5,&), K(7,&) and K(9, &) in the same way
as for G-(h, &), that condition (2:10) could be satisfied
only when the signs Sz, had been used for even U(h);
on the other hand, by using the signs Ss,(—1)» contra-
dictory results were always obtained. Similarly the
sign for |Ue(1)]=0-04 could not be determined with
certainty, but it was supposed that S;=+1 is more
probable.

Table 4 gives the values of the structure amplitudes
|Ue(R)| for b from 1 to 16, appertaining to the signs
Sp as well as to signs Sz obtained by the method
described. It follows that the agreement is complete.

5. Appendix

(i). The function cos2mhx within the interval
0 < |2 <} for 2 odd can be expanded in a Fourier
cosine series with the coefficients

2 .
ao(h) = 7, 8in 27h(4 (1)
4h .
an(h) = m sin 27Zh/4.COS 271’)’)//2 . (2)

(ii) The function sin 2mhx within the interval
0 < |z] < § can be expanded in a Fourier cosine series
with the coefficients

bo) = — [1-(~1y] ®)

2h
bn(h) = =y L= (=1 )

In the Fourier series

sin 27hx = bo(h)+ X b, (k) cos 2nnz 5)

let the parameter x acquire all values z;. Then, by
summation over all ¢, we can express Us(h) by means
of Ue(n) in such a way that

A DIRECT SIGN-DETERMINING METHOD BASED UPON FOURIER SERIES

1—(—1)
3

[1—(—1)r+n]
2 — 2

Us(h) = 1{

)
+23
7T n

U c(n)} . (6)

(iii). The function cos? 27tha within 0 <x <} and the
function —cos® 2zha within } <z <} for every odd A
can be expanded in a Fourier series with the coeffi-
cients

Ao=0 (7)

8h?

An = 1)[4k2—(2n— 1)

sin 2z(2n—1)/4. (8)

(iv) The use of series (2-12) is stipulated by the con-
dition xy(max.) <. In the case of z;(max.)=} for any
variation of signs, the function G(&, &) will attain the
value of zero only for £=%. Such a behaviour of the
function G(h, &) will be discovered during the calcula-
tion. In this case the introduction of ‘difference struc-
ture factors’ Ucq(h) defined by

Uca(h) = Sp|Uc(h)| —n; cos 27h/2 9)

is suggested, so that the whole procedure is to be
repeated using these factors.
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