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New functions G(H, ~) and K(H, ~) derived by application of Fourier series with the coefficients 
depending upon unitary structure factors U(H) are introduced and a method for their use for sign 
determination is suggested. For all $ within the interval t m i n .  < ~ < 1 ,  where train, is a structure depen- 
dent parameter,  the conditions G(I-I, ~) = 0 and K(H, $) = 0 are satisfied only then when the correct 
signs are alloted to the coefficients. The method was successfully applied to a hypothetical centro- 
symmetric structure for which the signs of U(hO0) for all h from 1 to 16 were determined. A genera- 
lization of the functions which enables to include gradually aH [U(hkl)[ into the computation is also 
suggested. 

1. Introduct ion  

The phase de terminat ion  f rom the diffraction intensi ty  
d a t a  is the  main  problem in solving crystal  s tructures.  
The recent  search for a direct method  for the  deter- 
minat ion  of phases was grea t ly  s t imula ted  by  H a r k e r  
& Kasper ' s  paper  (1948) on the  use of inequalities 
existing between s t ruc ture  factors.  Dur ing the  last  
decade several methods  have  been developed by  means  
of which the  phases of s t ruc ture  factors can be found 
directly.  All these methods  which are based either on 
inequal i ty  relations, probabi l i ty  theory,  statist ics or 
the  Pa t t e r son  funct ion have  been published in this 
Jou rna l  and  so are known to the  X - r a y  crystallo- 
graphers.  

Meanwhile, only a few papers  published deal with 
the  application of Fourier  series for direct sign deter- 
mina t ion;  Gillis (1948) in deriving one of his inequali- 
ties was first  to use the  Icos a 2~xl funct ion developed 
in a series of cosine te rms only. l~ecently, Hughes  
(1957) used general  Fourier  series in deriving a set of 
inequalities which in certain cases, were more con- 
venient.  

I n  the  present  paper  a new method  for the  direct  
sign de terminat ion  for cent rosymmetr ic  s t ructures  is 
described. The method  is based on the  use of functions 
derived by  expanding the  expression for the  s t ruc ture  
factor  in a Fourier  series. 

2. O n e - d i m e n s i o n a l  ca se  

Analogous to the expression for the  un i t a ry  s t ruc ture  
factor  

lv/2 
Uc(h) = 2 .~, n~ cos 2~hx~ (2.1) 

i = 1  

in the  one-dimensional cent rosymmetr ic  case, we 
introduce the  expression: 

~V/2 
Us(h) = 2 .~ n~ sin 2~hxi (2.2) 

i = 1  

with the  usual  symbols and  notat ion.  
A centrosymmetr ic  s t ruc ture  can a lways be defined 

in such a way  t h a t :  

0 _< lx~l _< ½. (2.3) 
I f  the  condition 

0 _< Ix~l _< ~ (2.4) 

were satisfied it would be possible to expand  each 
cosine t e rm with  h odd in a Fourier  cosine series with 
the  fundamenta l  period 2L = ½: 

oo 

n~ cos 2~hx~ = n~ao(h) + .~ n~an(h) cos 2z2nx~ (2.5) 
n = l  

where ao(h) and  an(h) depend only upon the  values of 
h and  n (Appendix (i), (1), (2)). 

For  the  purpose of using equat ion (2.5) under  
condition (2.3) we introduce a new pa rame te r  ~ such 
t h a t :  

0 _< [x~--~] _< ~ .  (2.6) 

Then equat ion (2.5) can be wri t ten:  

n~ cos 27eh(xi- ~) 
co 

-[niao(h)+ .~,nian(h) cos 2 ~ 2 n ( x i - ~ ) ] = 0 .  (2.7) 
n = l  

By summat ion  over all x1 we obtain the  equat ion:  

2~/2 
2 • ni cos 2 ~ h ( x i -  ~) 

i = 1  

- -  ao(h)+~Yan(h) 2 ~ y n t e o s 2 ~ 2 n ( x ~ - ~  = 0 ,  
n = l  i = 1  

(2.8) 

the  val idi ty  of which now is given by  the  condit ion:  

0 _< tx~(max.) -~l  -< ¼ (2-9) 

which means t h a t  for all values of ~ within the  in terval  

~mio.< ~ --< ~ (2"10) 
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equation (2-8) must be satisfied. Thus 

~i~.=x~(max.)- ~ • 

Now we shall consider the left side of equation (2.8) 
as a function G(h, ~). I t  follows that, for given para- 
meters (h, x~), G(h, ~)=0 only if the values of ~ are 
within the limits defined in (2-10). 

If we substitute the sum of cosines and sines in 
equation (2-8) by the expressions (2.1) and (2.2) 
respectively, we have 

G(h, ~)= Uc(h) cos 2~h~ 

- [a0(h)+  ~ an(h)U~(2n) cos 2~2n~] 

+ Us(h) sin2z~h~-[.Xa~(h)Us(2n)sin2z~2n~] (2.11) 
n 

where G(h, ~)= 0 for 

The function G(h, ~) is best represented graphically 
when plotted against ¢ with an Cmin. arbitrarily chosen, 
since the value of Cmi~. changes from structure to 
structure (Fig. 1). 

~mln  

0.25 

Fig. 1. General shape of the  funct ion G(h,~) for h = l ( 1 ) ,  
h=3(2 )  and h----5(3). As G(h, ~) depends upon  the  un i t a ry  
s t ructure  factors, ~min. and the  shape of the  curve change 
from s t ruc ture  to s tructure.  

The shape of the curve depends upon both the 
moduli and the signs of the coefficients U~(h), U~(2n), 
Us(h) and Us(2n). If only the moduli are known we 
can allot a sign to each of these coefficients arbitrarily. 
Obviously, we should try several sets of signs, but 
only that  set may be considered as correct for which 
G(h, ~)=0 for all ~ satisfying condition (2.10). More- 
over, the value of ~in. for a given odd h will be valid 
for any other odd h, which yields an additional con- 
dition for ~ . .  and a further check for the reliability 
of the chosen set of signs. Herewith the fundamental 
idea of the method is explained. 

The coefficients Us(h) and Us(2n) cannot be deter- 
mined from the experiment. This obstacle is easily 
removed by using Fourier series involving only cosine 
terms in the interval (0, ½): 

Us(h) = b0(h)+ .~b,,(h)Uc(n) (2.12) 
n 

(Appendix (ii), (3)-(6)). Herewith the use of the func- 
tion G(h, ~) is limited only to those structures for which 
Ixi(max.)l <-~. A suggestion for the use of G(h, ~) in 
the case when x~(max.)=½ is given in Appendix (iv). 

An additional relation between the structure factors 
can be obtained in a similar way by expanding 
cos ~ 2nhx and - c o s  2 2nhx in a Fourier cosine series 
in the interval [0, i] and [I, ½] respectively, with the 
fundamental period 2L= 1 (Appendix (fii), (7)). Thus 
we introduce another function K(h, ~) defined as: 

K(h, ~) = 1 + Uc(2h) cos 2:~2h$ 

- 2 [ ~  a2n+l(h)U~(2n+ 1) cos 2g(2n + 1)~] 
n 

+ Us(2h) sin 2:~2h~ 

- 2 [ Z  a2n+~(h)Us(2n + 1) sin 2:~(2n + 1)~] (2-13) 
n 

where K(h, ~)=0 for all values of ~ which satisfy 
condition (2.10). 

The function G(h, ~) involves even structure factors 
as coefficients of the cosine terms except one which is 
odd. On the contrary the values of the even coefficients 
of the sine terms depend upon the odd structure 
factors. For the function K(h, ~) the inverse relation 
holds. The function G(h, ~) should be more convenient 
for determining the signs of the even structure factors 
and K(h, ~) for the odd ones, as will be demonstrated 
in detail in § 4. 

3.  G e n e r a l i z a t i o n  o f  G(h, ~) a n d  K(h, ~) f o r  

t h e  t h r e e - d i m e n s i o n a l  c a s e  

The reflexions hkl are divided into groups with indices 
ph, pk, pl where p is an integer defining the group. 
By appropriate transformation of the axes for each 
hkl, the indices ph, pk, pl can be transformed into 
ph', 0, 0 and the functions G(h, ~) and K(h, ~) may be 
applied in the same way as in the one-dimensional 
case. Using the reciprocal-lattice notation, we have for 
each H(hkl) in the pth group H =pHo where H0 is the 
vector belonging to the lowest reflexion. Using the 
same notation the expressions (2-1) and (2-2) can be 
rewritten 

~'/2 
Uc(H) = 2 ~ n~ cos 2:~H. r~ (3-1) 

i=1 

N/2 
Us(H) = 2 .~n i  sin 2:~H.ri (3-2) 

i=1 

respectively. Similarly, we introduce a new parameter 
defined by ~ '= H0.5, where the value of ~mi.. depends 
upon H0. For the sake of simplicity and analogy with 
the preceding paragraph, ~ will be further written 
instead of ~' and ~min. instead of ~min.. For the same 
reason G(H,~') and K(H, ~') will be replaced by 
G(H, ~) and K(H, ~) respectively. 
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The functions G(H, ~) and K(H, ~) may therefore 
be written in the form 

G(H, ~) = Uc(H) cos 2~rp~ e 

-- ao(p) + ~ an(p) Uc(2nHo) cos 27r2n 
n = l  

c o  

+ Us(H)sin 27rp~- [~an(p)Us(2nHo)sin 27r2n~e l 

(3.3) 
K(H, ~) = 1 + U~(2H) cos 2~2p~ 

c o  

--2 I~==a2n+i(p)Ue[(2n + I ) H ]  cos 27r(2n +l)~e t 

+ Us(2H) sin 292p~ 

- 2  ~,~+~(p)Ss[(2n+l)H]sin2~(2n+l)~ (34) 

where p is now an odd integer. 
Each of the functions G(H, ~e) and K(H, ~) is iden- 

tical with a sum of ~ourier series G~(H, ~) and K~(H, ~e) 
respectively, the sum being taken over all atoms in 
the unit cell, so that  we may write: 

~'/2 
G(H, ~e) __ 2 ~ G~(H, ~e) (3.5) 

i = 1  

-m/2 

K(H, ~) = 2 ~7 Ki(H, ~). (3.6) 
i = l  

Multiplying each G,(H, ~) as well as K,(H, ~) by 
cos 27rHl.ri  and sin 2~rHl.r ,  respectively, we obtain 
new functions Ge, Ke, Gs and Ks of the form: 

Ge(H, Hi, ~) = 2~:G~(H, ~) cos 2~Hi . r~  (3.7) 
i = 1  

~V/2 

Kc(H, Hi, ~) = 2 ~ K ~ ( H ,  ~e) cos 2 ~ H i . r i  (3-8) 
i = l  

~ / 2  

Gs(H, H i ,  ~) --- 2 ~ G~(H, ~) sin 2 g H i .  r~ (3-9) 
i = l  

2V/2 

Ks(H, Hi, ~) = 2 ~ 'K~(H, ~) sin 27~Hi.r~ (3.10) 
i = 1  

where Hi is not necessarily different from H. The value 
of ~mi.. which belongs to these functions will be either 
equal to, or less than the value of ~i=. belonging to the 
function G(H, ~) and K(H, ~), no matter which Hi has 
been chosen. I t  is evident that  the functions (3.7)- 
(3.10) depend upon (H+Hi ) ,  ( H - H i ) ,  (2nH0+Hi),  
(2nil0 -- Hi), [(2n + 1)H0 + Hi] and [(2n + 1)H0-  Hi]. 

For the purpose of expanding the expressions (3.7)- 
(3.10) in series similar to those given by (3"3) and (3.4), 
we introduce new symbols by writing 

/v/2 
Uec(Hi, H2) = 2 ~" (n~ cos 2~rHi. r~) (cos 2~rH~. r~) 

i=i (3"11) 

A C 1 2  

-~'/2 
U~s(H1, H2) = 2 ~ (n~ cos 2~H~. r~) (sin 2~H~. r~) 

i=i (3"12) 

Use(H1, He) = 2 ~  (m sin 2~Hl . r t )  (cos 2~Hg..ri) 
i = i  (3"13) 

Uss(Hi, He) = 2 ~ (n~ sin 2~rHi. ri) (sin 27rH~. ri) .  
i = l  (3"14) 

Using the formulae (2.1) and (2.2) we may write 
these expressions in the form 

Uec(H~,H~)=½[U~(HI+He)+U~(H1-H~)] (3.15) 

Ues(H1, He)=½[Us(Ht+He)-Us(H~-He)] (3-16) 

Usc(H1, H~)=½[Us(H~+He)+Us(H1-H2)] (3.17) 

Uss(Hi, H~)= ½[- Uc(Hi + He)+ Ue(H~- He)]. (3-18) 

We have now for the functions (3.7)-(3-10) the fol- 
lowing expressions : 

Ge(H, Hi, ~) = Uce(H, Hi) cos 2~p~ e 

+ Use(H, Hi) sin 2gp~-ao(p)Uc(H1) 

- In~=lan(p)Uce(2nHo, H1) c°s 27r2n~] 

[ " ~  H0, 2~2n~1 (3.1.9) 12. an(p)Use(2n Hi)s in  
L J=l 

Kc(H, H~, ~) = Uc(H~) 

+ Ucc(2H, Hi) cos 2~2p~+ Usc(2H, H1) sin 2~2p~ 
c o  

{~_aen+t(p)Ucc[(2n +l)H0,  Hi] cos 2~(2n + l ) ~ /  ~ 2 

-2{~a2n+l(p)Usc[(2n+l)Ho, H1] sin 2~(2n+1)~} 

(3.20) 
Gs(H, Hi, ~) = Ucs(H, Hi) cos 2~zp~ 

+ Uss(H, H1) sin 2~p~-ao(p)Us(H1) 

r 1 - 2; an(p)U~(2nHo, H1) cos 2~2rC 
Ln=l 

- -  [ ~ an(p)Uss(2nHo, Hi)s in  2~2n~ / (3.21) 
k n = l  3 

Ks(H, Hi, ~) = Us(H1)+ Ucs(2H, Hi) cos 2n2p~ 

+ Us~(2H, H1) sin 2~2p~ 
/ c o  

",1 cos t ~ 2 

c o  _2{nZ.~=ia2n+i(p)Uss[(2n.-I-1)Ho, H,] sin 2=(2n-F 1)~ / • 
(3.22) 

By variation of H1 all hkl can be included in the com- 
putation. If a convenient value of H was chosen, one 
will obtain a ~min. with a value considerably smaller 
than ¼. The value of ~min. depends upon the atomic 

51 
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coordinates (x~, y~, z~), i.e. it varies from structure to 
structure. 

A further generalization of the expressions (3.7)- 
(3.10) might be useful by the introduction of more H~ 
terms. In this case we have: 

Gccc(H, H I ,  H2,  H3,  . . . ,  ~) ---- 2 ~  v G~(H, ~) x 
8sS i =  1 

(cos 2~rH~.r~) (cos 2~rH~.r~) (cos 2~rHa.r~)...  
(3.23) 

(sin 2~rH~.r~) (sin 2~rH~. r~) (sin 2~rH3.r~)... 

~v/2 
Kccc(H, H~, H~, H3, . . . ,  ~) = 2.~K~(H, ~) × 

888 ~= 1 

(cos 2~rHt.r0 (cos 2~rH~.r~) (cos 2~rHs.r~).. .  
(3.24) 

(sin 2zrHt.r~) (sin 2~rH2.r~) (sin 2~rH3. r~) . . .  

4 .  A p p l i c a t i o n  a n d  d i s c u s s i o n  

The functions G(h, ~) and K(h, ~e) may be conveniently 
applied for sign determination in the following way: 

The search for the correct set of signs begins with 
the set which satisfies condition (2.10). At first, we 
have to remember that  this condition is satisfied for 
only one set of signs S~n belonging to even amplitudes 
Uc(2n), but that  two sets of signs $2~+1 and -$2n+1 
can be alternatively allotted to the odd amplitudes 
Uc(2n+ 1). This is due to the alternative imposed by 
the choice of the origin, since we can define the struc- 
ture by means of the parameters x~ as well as ½ + x~. 
I t  will be convenient therefore to omit all odd terms 
U~(2n+l) and to carry out the computation with a 
reduced function Gr(h, ~e) which includes the even terms 

centre was introduced in the points x=~, ~ so that 
to each atom in x~ an arbitrary atom ½-x~ was 
added. For this reason, two sets of signs $2, and 
(-1)~N2n are possible, according to the choice of 
origin at x = 0 or x = ¼. Which of the two sets is correct 
has to be determined by means of the function 
K(h, $). The set of signs obtained by means of Gr(l, $) 
is to be applied in considering the next odd function 
Gr(3, $), by which the next even amplitude Uc(2n) is 
introduced and the procedure continued.* 

The method was examined in this laboratory on a 
hypothetical centrosymmetrie structure defined, with- 
out the knowledge of the author, by five identical 
points atoms with the x-coordinates given in Table 1. 

* I n  practice,  the  func t ion  G(h, ~e) will no t  have  the  cons tan t  
value zero t h r o u g h o u t  the  in terva l  ~min. ~ ~ _-- ¼ b u t  will 
f luc tua te  be tween small  posit ive and  negat ive  values decreas- 
ing to G(h, ~)----0 for ~----¼. This f luc tua t ion  is caused by  the  
approx ima t ion  of the  series b y  a l imi ted  n u m b e r  of te rms  and  
m a y  be source of an  u n c e r t a i n t y  in the  choice of the  signs. 
I t  is necessary,  therefore,  to  consider the  subsequent  funct ions 
G(h, ~) with  h odd in order  to  f ind out  the  correct  set of signs 
and  so to  e l iminate  the  ambiguous  ones. I t  m i g h t  happen  
t h a t  even af te r  t h a t  t r ia l  we cannot  decide be tween two sets; 
t h a t  will be so when  the  values of Uc (h) are ve ry  near  to zero. 
On such an  occasion we have  to decide which set of signs is 
m o s t  probable.  

The unitary structure factors Uc(h) were calculated for 
h from 1 to 16, but only the moduli IUc(h)] were given 
to the author for sign determination by means of the 
suggested method. 

Table 1. Atomic parameters of the hypothetical 
structure 

x 1 0-06 x 4 0.30 
x~ 0.20 x 5 0.40 
x a 0.24 

The functions G and K were multiplied by a factor 
200~ for the sake of convenience in the computation 
which was carried out by means of Beevers & Lipson 
strips. 

The terms of the series included in the computation 
on G(h, ~) and K(h, ~) depended upon h and U(n). 
So for example the coefficients of the series in G(h, ~) 
are of the value: 

4h 
a ,  ~(h2_ 4n9 ) sin 2r~h/4. cos 2xen/2 

(Appendix (i), (2)). I t  is seen that  those terms of the 
series with the coefficients an where the difference 
(hg'-4n 2) is as small as possible will most contribute 
to the sum of the series. By increasing h, the higher 
terms of the series will also be included. By analogy 
the same is true for K(h, ~). Absolute values of unitary 
structure factors exert also a great influence upon the 
convergence of the series. In the product by a ,  they 
give the criterion to judge whether they will be in- 
cluded in the computation or not. 

The reduced function G~(1, ~e) was given by the for- 

200uGh(I, ~) 
= -- 400 -- 800/3 Uc(2) cos 2 ~2 ~ + 800/15 Uc(4) cos 2 ~4 

- 800/35 Uc(6) cos 2 g6 ~ + - . . .  + 628 Us(l) sin 2g ~. 

In the first approximation the remaining terms were 
omitted from the computation. 

Substituting the values for Uc(h) for h--2, 4, 6 from 
Table 4 we have 

200gGr(1, ~) = - 4 0 0 -  83. $2 cos 2~2~ 

+9 .$4  cos 2 ~ 4 ~ -  8. $6 cos 2~6~ 
-- [ --400+ 83. $2+9.  $4+ 8. $6] sin 2zr~. 

In order to find out the correct set of the three signs 
$2, Sa, $6 we have to compute 28--8 different for 
200gGr(1, ~e). The result is shown graphically in Fig.2. 
I t  is clearly seen that  only set No. VI (Table 2) in 

Table 2. Variation of signs of the structure factors 
U(2), U(4) and U(6) 

s 2 s 4 s 6 s 2 s 4 s ~  
I ~-I +i -bl V +I --I --I 

II +i +I --1 Vl --I +1 --1 
III + 1 -- 1 + 1 VII -- 1 -- 1 + I 
IV --1 +1 +1 VIII --1 --1 --I 
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628 G(1,$)i 
20: 

0q~5 ~ . 2 5  

/ 

Fig. 2. Curves of the functions G(1, }) for eight possible varia- 
tions of the signs $9, S 4, S 6 for the hypothetic structure. 
Variation No. 6 is correct. 

which S~. = - 1, Sa = + 1, $6 = - 1 satisfies the  con- 
di t ion (2-11) where }rain. has the value }rain.=0"20. 
For all the  other seven var ia t ions of signs the  funct ion 
200zGr(1, }) 'detaches '  itself considerably from the 
abcissa even very  near  the  point  }=¼ and remains  
different from zero for all } which is } < ¼. 

Now, we have to use the function Gr(3, }) with the 
signs for Uc(2), Uc(4), Uc(6) just obtained and t ry to 

gave the signs for the amplitudes for higher h. (Fig. 3 
and Table 3). 

Table 3. Subsequent determination of the signs 
S~.n by means of G(h, ~) 

S~ $4 Se Ss SlO Sl.. $14 S16 
G(1,~) - 1  +1 - 1  
G(3, ~) - 1  +1 - 1  --1 +1 
G(5, ~) - - I  + I  - - I  --1 -FI 
G(7, }) --I +I --I --I -I-1 --I 
G(II, $) --1 +I --1 --1 +I --I --I +I 

Thus,  all possible variations of signs for the  even 
amplitudes were reduced to two sets of signs S2n and 
S2n(-1)n .  Only the result for such a small  ampl i tude  
as ]Uc(14)] = 0 . 0 6  could not  be considered as reliable. 
Nevertheless the sign $14 = - 1 seemed more probable. 

Func t ion  K(h, ~) involves, except  U(2h), only odd 
structure factors Uc(2n+l) and Us(2n+l).  Mean- 
while, all U s ( 2 n + l )  involve even terms Uc(2n) only, 
for which the signs have just been determined and given 
by the two alternative sets. I t  was shown by the com- 
putation,  which had been carried out for K(1,  ~), and 

Table 4. Calculated Sc and determined Sa signs 
of the hypothetical structure 

IUc(h) l Sc Sa h IUc(h)l S¢ S~ 
0.04 + 1 + 1 9 0.25 -- 1 -- 1 

find out the correct signs for Uc(8) and Uc(10). We 
can easily establish that  Gr(3, ~)= 0 for all ~ for which 
0.20 _< ~ _< ~, when the above signs S~ for h = 2, 4, 6 
are inserted and  when S s = -  1 and  $1o= + 1. The 
use of the  subsequent  funct ions Gr(5, ~), Gr(7, ~) and  
Gr( l l ,  ~) confirmed the  previous choice of signs and  

628G(h,~)' 

20. 

lo 

lo 

20- 

2 0.32 -- 1 - -  1 10 0.28 + 1 + 1 
3 0.11 +1  +1 11 0.40 --1 --1 
4 0.17 +1  -F1 12 0.15 --1 --1 
5 0.20 + 1 -F 1 13 0.25 + 1 -F 1 
6 0"35 - - I  - - I  14 0"06 - - I  - - I  
7 0"20 -- 1 -- I 15 0"20 + I + 1 
8 0"29 -- i -- 1 16 0"26 + I + 1 

G(1,~) 
. / 

G (s,D 

/ 

Fig. 3. Curves of the function G(h, ~) for h = l ,  3, 5, 7, 11 by means of which the correct signs S2n for 
the  hypothetical structure were determined. 

51" 
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K(3, ~), K(5, $), K(7, ~) and K(9, ~) in the same way 
as for Gr(h, ~), that  condition (2.10) could be satisfied 
only when the signs S2n had been used for even Uc(h); 
on the other hand, by using the signs $2~(- 1)~ contra- 
dictory results were always obtained. Similarly the 
sign for IU~(1)I=0"04 could not be determined with 
certainty, but it was supposed that  $1 = + 1 is more 
probable. 

Table 4 gives the values of the structure amplitudes 
]Uc(h)[ for h from 1 to 16, appertaining to the signs 
Sa as well as to signs S~ obtained by the method 
described. I t  follows that  the agreement is complete. 

5. Appendix 
(i). The function cos2zhx within the interval 
0 < lx I _< ¼ for h odd can be expanded in a Fourier 
cosine series with the coefficients 

2 
ao(h) = ~-~ sin 2z~h/4 (1) 

4h 
a~ (h) = g(h~ ' _ 4n~) sin 27~h/4. cos 2z~n/2. (2) 

(ii) The function s in2zhx within the interval 
O _< Ix] < ½ can be expanded in a Fourier cosine series 
with the coefficients 

1 [1_ (_  1)~ ] (3) bo(h) = ~-~ 

2h 
bn(h) - ~(h2_n~ ) [ 1 - - ( -  1)h+~]. (4) 

In the Fourier series 

sin 2z~hx = bo(h) + ~Y, b~(h) cos 2ztnx (5) 
n 

let the parameter x acquire all values xi. Then, by 
summation over all i, we can express Us(h) by means 
of Uc(n) in such a way that 

Us(h) = _l t{1-  ( -  1)h 
( h 

+ 2 . ~  v h [ 1 -  ( -  1)h+n] } 
,, h~_n2 Uc(n) . (6) 

(iii). The function cos 2 2ghx within 0 < x < ¼ and the 
function - cos 2 2~hx within ¼ < x < ½ for every odd h 
can be expanded in a Fourier series with the coeffi- 
cients 

A0 = 0 (7) 

8h2 
A,, = ( 2 n _ l ) [ 4 h 2 _ ( 2 n _ l ) 2 ] . s i n 2 z c ( 2 n - 1 ) / 4 .  (8) 

(iv) The use of series (2.12) is stipulated by the con- 
dition xi(max.)< ½. In the case of x,(max.)= ½ for any 
variation of signs, the function G(h, ~) will attain the 
value of zero only for ~ = ¼. Such a behaviour of the 
function G(h, ~) will be discovered during the calcula- 
tion. In this case the introduction of 'difference struc- 
ture factors' U~a(h) defined by 

Uca(h) = S~l Uc(h) l -n i  cos 2z~h/2 (9) 

is suggested, so that  the whole procedure is to be 
repeated using these factors. 
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